Fifty million people were directly affected and 100 million more were indirectly affected. About 20 million people risked acute food insecurity and potential famine, 4.4 million required humanitarian aid, and refugees fleeing drought and floods numbered in the hundreds of thousands.
To help solve these problems, the governments of Kenya, Ethiopia, Djibouti, South Sudan and Uganda, and three United Nations agencies, launched the Groundwater Access Facility on 7 May 2024. It aims to develop a plan to extract millions of cubic kiloliters of deep groundwater.
I research sustainable development, poverty alleviation and ways to adapt to climate change. This new initiative will focus critical attention and resources on water scarcity in the region. Together with better drought forecasting, this can help the Horn of Africa build resilience against future droughts and promote sustainable development opportunities.
Based on my co-authored research on groundwater in the region, I propose that a strategic network of deep groundwater bores (boreholes) be considered at regional scale to support both acute humanitarian relief efforts and longer term drought resilience building.
The problem
Beyond the humanitarian crises, the recurring droughts in the Horn of Africa cause spikes in food prices, reduce gross domestic product across the region, and intensify insecurity and conflict risk. Recent prolonged droughts have been followed by flooding, which can displace entire communities.
The world’s largest population of nomadic herders lives in the Horn of Africa. They make up half the population in some countries. The herders are increasingly chasing rains that never come, or come all at once. Smallholder farmers are also affected and crops fail. Over 40 million people in regional border areas have little or no water infrastructure.
Studies by institutions such as the British Geological Survey, United States Geological Survey and World Bank Group have confirmed voluminous resources across sub-Saharan Africa. Based on our review of this information, we believe a network of deep groundwater bores can work in the Horn of Africa.
Groundwater to the rescue
Groundwater supplies half of all drinking water and approximately one-third of irrigation and industry water in the world. Unlike surface water (rivers, streams and lakes) and shallower aquifers, deeper groundwater resources may present climate resilient, unpolluted and plentiful supplies of water in times of drought.
Read more: Groundwater can prevent drought emergencies in the Horn of Africa. Here’s how
In the Horn of Africa, studies confirm that deep groundwater is often available in drought hotspots. Recurrent drought hotspots are well-known. Droughts can be increasingly predicted and groundwater infrastructure prepared in advance. Where it is refilled from time to time, using groundwater can be sustainable.
Recent reinterpretations of old well data indicates that about 400,000 Olympic-size swimming pools of rechargeable fresh groundwater exist in Somalia. Nearby Tanzania has a deep aquifer, estimated to have enough water for two million people.
Groundwater can also support emergency drought relief operations as it can be up to 50 times cheaper to supply to communities than water delivered by trucks.
The network of deep bores could be a mixture of supply to communities with the water they need every day or for drought emergencies when other water supplies run out, dependent on factors such as resource sustainability and local preferences.
The communities who are most affected by drought in the Horn of Africa, and their seasonal movements, are also well known. This means they can be more effectively supported by networked groundwater supplies.